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elongation as well as inverse aspect ratio can have significant effects

on the frequencies of the resonant cavity modes.
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BiCG-FFT T-Matrix Method for Solving for the
Scattering Solution from Inhomogeneous Bodies

J. H. Lin and W. C. Chew

Abstract—A BiCG-FFT T-Matrix algorithm is proposed to efficiently
solve three-dimensional scattering problems of inhomogeneous bodies.
The memory storage is of O(N) (IV is the namber of unknowns) and each
iteration in BiCG requires O(N log N) operations. A good agreement
between the numerical and exact solutions is observed. The convergence
rate for lossless and lossy bodies of various sizes are shown. It is also
demonstrated that the matrix condition number for fine grids is the same
as that for coarse grids.
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1. INTRODUCTION

The scattering of electromagnetic fields by inhomogeneous bodies
is a research topic that finds applications in many fields. In this paper,
we propose a method of solving the inhomogeneous body problem by
approximating the inhomogeneous body with small dielectric cubes.
The dielectric cubes are then approximated by equivolume spheres
[1]-[6]. In this manner, the T matrix [7], [8] of each individual sphere
can be found in closed form. A set of linear algebraic equations can
be easily derived to solve for the scattering amplitudes from each of
the spheres. By using this T-matrix formulation, the Green’s function
singularity problem is avoided, while other formulations, such as the
method of moments [9], such a singularity has to be handled with
caution [10}-[12].

Direct solvers such as Gaussian elimination can be applied to solve
for the scattering amplitudes in O(V®) operations and require O(N'?)
filling time of the matrix, where N is the number of unknowns.
However, the computation is prohibitively intensive for large objects
and the tremendous memory requirement cannot be met by most
computers.

Tterative solvers such as CG (conjugate gradient) [13], [14] or
BiCG (bi-conjugate gradient) method [15]-[17] can be used to
circumvent the matrix storage difficulty although there are still
O(N?) operations in each iteration and total number of iterations to
converge is problem-dependent. In this work, we apply BiCG to solve
for the solution of the matrix equation iteratively. When an iterative
solver is used, the main cost of seeking the solution is the cost of
performing a matrix-vector multiplication. When the inhomogeneous
body is discretized into a regular grid, however, the resultant equation
has a block-Toeplitz structure. Exploiting the block-Toeplitz structure,
we can perform the matrix-vector multiplication in O(XNV log )
operations by FFT [10]-[12], [18].

The method can be shown to require O(N) memory storage.
Hence, it can be used to solve fairly large problems. A volume
scattering problem with 90000 unknowns is solved on a Sparc 10
workstation. It is shown that iterative solvers converge faster for
lossy bodies than lossless ones. This is because the matrix condition
number for the former cases is smaller than that for the latter ones,
as a lossless body could have high () internal resonance modes.

As the simulation results show, by using the T-matrix formulation,
the condition number of the resultant matrix is independent of the
mesh size of a uniform grid. Therefore, the number of iterations does
not grow when the body is gridded finer in order to achieve better
resolution.

1. FORMULATION AND IMPLEMENTATION

When a namber of scatterers are placed on a uniform array, their
scattering solution can be obtained efficiently by using FFT and an
iterative method.

The total field due to an array of nonidentical scatterers can be
written as

N
E(I‘) = ¢t (1\505 rs) - +Z"/)t (k()» rz) * bm (1)

=1

where r, = r — r, and r, is the location of the scattering center
of the ith scatterer. %' (ko. T,) is a row vector containing the
vector spherical harmonics from each scatterer. The first term in (1)
comprises the incident field while the second term is the scattered
field. The vectors a, and b, contain the amplitudes of the incident
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BiRCS of a dielectric layered sphere
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Fig. 1.

(a) The Bi-RCS of a spherically layered sphere. The solid line is from the Mie series solution; the dash line is the numerical solution. Here

b=0.5Xg, €,1 = 1.2, @ = 1.0A¢ and €72 = 2.4. A 30 x 30 x 30 grid is used. (b) The near fields of the spherically layered sphere. The observation points
are 3¢ away from the center. The solid line and dash line denote the Mie series solution and numerical solution, respectively.

field harmonics and the scattered field harmonics from the ¢th
scatterer, respectively.

Focusing on the jth scatterer, we can use the addition theorem or
the translation matrix [6], [19] to change the coordinates of all the
spherical harmonics to that of the jth scatterer to obtain

E(r) = Rg9' (ko, 7;)
N
N @i - b+ 9 (ko, 1)) - by

=1

i#J

as + %Q‘I}t (Ko, ;)

.a].s.

V3

Looking at the above, we see that the first two terms are incident
waves impinging on the jth scatterer while the third term is the scat-

tered field off the jth scatterer. Therefore, the amplitude of the third
term must be related to the total amplitude of the first two terms via
the isolated scatterer T matrix of the jth scatterer, i.e., T ;). Here,

T;(1) is diagonal for the spherical scatterer. Consequently, we have

N
by =Ty - |Fs - as+ Y i - bi

i=1

i3

j=1--, N 3

Essentially, we match the boundary condition at the surface of the
7th scatterer instead at the center of the scatterer. This explains why
this formulation avoids the singularity problem.
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Fig. 1. (Continued.) (c) Different components of the internal fields of the spherically layered sphere are calculated at z, y, and z axes by the Mie
series (solid lines) and the algorithm (dashed lines).
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Fig. 2. The far fields as a function of 6 computed for a lossless dielectric cube with €, = 9 and kga = 0.628 319. The solid lines represent the results
by the BiCG-FFT T-matrix method and the symbols o represent the results by Zwamborn and van den Berg. A 7 x 7 x 7 grid is used. (a) The far
field |{Eg|| as a function of 6. (b) The far field ||E4|| as a function of 6.

Equation (3) could be rewritten as [K] e, ifj#¢ (6b)
N 4 0,  otherwise

b; —Tj(l) . z @;; - b; = _—j(l) 7T R : “) [B]; =b;, (6¢)

=l [S]; =a@js - a.. (6d)

o Equation (5) can be solved with iterative methods like the bi-

B-T-A-B=T-5 (5) conjugate gradient (BiCG) method. It is well known that CG type
methods converge to the solution in at most V iterations under exact
arithmetics [13], [14] and generally can achieve enough accuracy
in much fewer iterations than V. Also, in most cases, the BiCG
[T}; =6;T;1) (6a) method converges faster than the CG method, since the former deals

where T and A are block matrices, and B and S are block vectors
whose block elements are given by
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Fig. 3. The number of iterations versus number of unknowns for lossless cubes of e, = 9.0 and for lossy cubes of €, = 9.0 + 43.0.

with the matrix equation directly instead of the normal equation in
the latter, where the condition number has been squared. In such a
method, the major computational cost would be in the matrix-vector
multiplication A - B. For a dense matrix, the cost of such a matrix-
vector multiplication requires O(N?M?) operations, where M is the
dimension of the @,, matrices.

When the scattering centers are placed on a uniform grid,
then @; = a(r, — r,). The translation matrix is only a
function of r, — r}. When the formulation is implemented, the
summation in (4) is actually replaced with a three dimensional
summation. In such a case, A can be expressed as a block-
Toeplitz matrix. By grouping the elements of same harmonics
into one block, the block-Toeplitz matrix is converted to a
Toeplitz-block matrix (i.e., each block is Toeplitz). Then the
fast Fourier transform (FFT) method can be used to expedite
the matrix-vector multiplication A - B with operation count of
O(NM log N).

If the spheres are small compared to Ao, it possesses only electric
dipole moments that correspond to the first three harmonics in T;(y).
Therefore, M = 3 and, furthermore, there are only six independent
elements in the 3 X 3 matrix o, due to the rotational symmetry.

In order to perform the matrix-vector multiplication more effi-
ciently, the Fourier transform of A, A is calculated only once outside
the iteration loop and stored. Note that A has been extended to
a circulant matrix in the x-, y-, and z-directions and zeros have
to be padded to the original vector to prevent aliasing. Hence,
whenever a matrix-vector multiplication is required in each iteration,
three forward, three-dimensional (3-D) FFT's corresponding to three
harmonics are first performed, they are then multiplied by A in the
frequency domain, and finally three inverse 3-D FFT’s are carried
out. Then, the product can be obtained by discarding those entries
with zero-padding in the first place.

The memory requirement of the method is still O(N) since each
block matrix in A can be represented by one of its rows or columns.

III. RESULTS AND CONCLUSION

In Fig. 1, a dielectric layered sphere is considered. This sphere
is approximated by a cluster of small cubes. For those cubes that
lie astride two different media, they are assigned to either media
according to whether the center of the cube is inside the spherical
interface or not. Then, all the cubes are replaced with equivolume
spheres. The incident field is a uniform plane wave impinging from
+z axis and with x polarization. The BiRCS, near field, and internal
field results have been shown in Fig. 1(a)—(c), and they all agree quite
well with the Mie series solutions. The BiRCS is defined as

BiRCS (¢, 8) = 10 log [ooo (6, 8)] — 10 log (\3) dB

where

2 ||IE (4, O)II°
IIE (o, 0)]I7

and in which ||E° (¢, 8)||* and ||E* (¢, 8)||* denote the scatiered
field and incident field vectors, respectively. The algorithm converges
in 53 iterations for the case in Fig. 1 and takes about'1} hours CPU
time on Sparc 10 workstation working in double precision. A good
agreement is also observed in Fig. 2 for a dielectric cube [12].

Shown in Fig. 3 are the number of iterations versus the number
of unknowns for lossless and lossy objects. As we have observed in
two-dimenional (2-D) cases [20], the number of iterations increases
with the size of the object, and in the lossy medium, fewer iterations
are required to converge than in the lossless medium. This shows that
in the lossy medium, the complex permittivity shifts the otherwise
small eigenvalues in the lossless medium away from the origin.
Physically, the resonant frequencies of the lossy dielectric body are
complex, while in practice, the operating frequency is always real,
which precludes the eigenvalues from being too close to zero.

The number of iterations is approximately proportional to N
for lossless objects and seemingly to N°"® for lossy ones when
N is large. Without preconditioners, the eigenvalue distribution

Tco ((ﬁ, 9) = 4R

lim
R—oo
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Fig. 4. The Bi-RCS of a dielectric sphere. The solid line is from the Mie series solution; the dash line is the numerical solution. Here, the radius =

1075X and €, = 4.0. A 16 x 16 x 16 gird is used.

seems dispersive without confinement as N grows and the erratic
convergence of BiCG algorithm worsens the already poor condition
number. In order for BiCG-FFT or its like to be more favorable, a
suitable preconditioner is needed.

Finally, we demonstrate that when the object is gridded finer, the T-
matrix formulation is still stable. The first example is a homogeneous
dielectric sphere with ¢, = 4.0 and the radius = 107%X,. The
simulation results show that the number of iterations remains as six
for the cases of 8 x 8 x 8, 16 x 16 x 16, and 32 x 32 x 32 grids.
Fig. 4 shows one of the results and it agrees very well with the exact
solution. We have also run a second example (not shown here) that
is a homogeneous dielectric cube with e, = 9.0 and the side length
= 0.34X¢. Similar to the first example, the number of iterations is
16 for all the three different grids as mentioned above.
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Reduced Invasiveness of Noncontact Electrooptic Probes
in Millimeter-Wave Optoelectronic Characterization

A. Zeng, S. A. Shah, and M. K. Jackson

Abstract—We report time-resolved measurements of the invasiveness of
LiTaO3 external probes in millimeter-wave electrooptic sampling, Using
external probe tips at varying distances from a coplanar stripline, we
show that invasiveness can be reduced in a noncontact configuration at
the expense of measurement sensitivity. In the contact configuration, the
risetime can be significantly lengthened by dispersion and signal reflection
caused by the probe tip.

1. INTRODUCTION

Electrooptic sampling (EOS) has been used in characterization of

high-speed electronic devices [1]-[3]. Many of these measurements
were made using LiTaOs external probes. To date there have been a
limited number of experimental studies of the invasiveness of LiTaO3
probes. The effects of reflection between the top and bottom interfaces
of the LiTaO; crystal on amplitude measurement has been studied
by Frankel er al. [4]. The effect of probe-tip-induced dispersion on
risetime measurements has been studied by putting a dummy LiTaOz
crystal between the electrical signal generator and the probe site [1].
In both of these studies the LiTaOs; probes were placed in direct
contact with the transmission line electrodes and the measurements
were performed in the time domain. The invasiveness of external
probes has also been studied using internal electrooptic sampling,
where a dummy probe was placed in the vicinity of the electrodes
of a coplanar stripline driven by a microwave synthesizer [5], [6].

Theoretical studies of the invasiveness of electrooptic probes have

been repotted [71, [8].
In this paper, we report a study of the invasiveness of external
LiTaO3 probes, extending previous measurements to higher fre-
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Fig. 1. Schematic of the pump and probe optics. The air gap h between the
tip and the sample can be adjusted.

quencies and lower invasiveness. We show that contact electrooptic
sampling can lead to measurement error. We also show that noncon-
tact electrooptic sampling provides a more accurate measurement of
risetime, at the expense of reduced sensitivity.

II. EXPERIMENT

Electrooptic measurements are made with 150-fs pulses from a
mode-locked Titanium-Sapphire laser. The external probe has an
inverted pyramid shape, with a LiTaOs crystal of footprint 200 pm
square and thickness 20 pm at the bottom. The arrangement of pump
and probe optics and the sampling tip is shown in Fig. 1; the probe is
used in a total-internal-reflection configuration, and the probe-sample
spacing % can be adjusted. Imaging of interference fringes under the
probe tip is used as a indication of probe tip parallelism with respect
to the sample surface, which is essential to ensure good contact. The
sample is a coplanar stripline with 50-pm-wide electrodes and 5-pm
spacing deposited on a 500-pm-thick semi-insulating GaAs substrate.
A photoconductive switch incorporated in the transmission line is
used to generate step like pulses.

III. RESULTS

"~ In Fig. 2, we show waveforms measured with two different air
gaps, and at two different positions of the probe beam in the sampling
tip; the probe-is approximately 1.5 mm from the photoconductive
switch. In Fig. 2(2), we show results for 2 = 0 (contact); the solid line
shows the waveform measured with the probe beam positioned near
the facet closest to the photoconductive switch, which we will refer
to as the front facet. The risetime of the signal is 1.9 ps. The dashed
line in Fig. 2(a) shows the waveform measured with the probe beam
near the back facet; the risetime in this case is 2.1 ps. In Fig. 2(b),
we show similar measurements for an air gap of » = 10 um. The
solid line measured at the front facet has a risetime of 1.7 ps, which
is the same as the risetime of the signal measured at the back facet,
shown by a dashed line.

The differences between the risetimes seen in Fig. 2(a) are not
due to the usual dispersion on the undisturbed transmission lines;
we have made measurements of risetime at varying distances along
the transmission line that show no significant difference in risetime
over the same distance. We attribute the lengthening in risetime to the
increased dispersion and attenuation introduced by the LiTaOs probe,
which functions as a superstrate. In Fig. 2(a), the feature near 14 ps
in the curve measured near the front facet is due to reflection from
the back facet of the probe, because of the large mismatch caused by
the differing impedances of the transmission lines with and without
the LiTaOs superstrate. The same reflection is not as obvious in the
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